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Abstract—We study a construction of the bent functions of least deviation from a quadratic bent
function, describe all these bent functions of 2k variables, and show that the quantity of them is
2k(21 + 1) . . . (2k + 1). We find some lower bound on the number of the bent functions of least
deviation from a bent function of the Maiorana–McFarland class.
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INTRODUCTION

Bent functions are the most distant from the class of affine Boolean functions of an even number
of variables. O. Rothuaus was the first to consider bent functions [9]. They have many applications
in cryptography, coding theory, and information theory. Nevertheless, there are still many unsolved
problems. The most important problem consists in describing all bent functions. In particular, the
determination of the structures of bent functions is on the agenda.

In this paper, we consider a construction of the bent functions of least deviation from a quadratic bent
function. In [1], it is shown that the two bent functions of 2k variables are at distance 2k (i.e., at the
minimum possible distance between two different bent functions) if and only if they differ on an affine
subspace of dimension k and are affine on it. We describe all bent functions that are of least deviations
from a quadratic bent function (Theorem 1) and also show that the number of these bent functions
of 2k variables is 2k(21 + 1) . . . (2k + 1) (Theorem 2).

It is known that all quadratic bent functions are affinely equivalent to the function

x1xk+1 ⊕ x2xk+2 ⊕ · · · ⊕ xkx2k

which belongs to the Maiorana–McFarland class. Therefore, we further consider the more general
problem of finding a lower bound on the number of the bent functions of least deviation from an
arbitrary bent function from the Maiyorana–McFarland class (Theorem 3). In conclusion, there are
some assertions and a hypothesis of estimating the number of bent functions at distance 2k from an
arbitrary bent function.

1. DEFINITIONS

Let Z
n
2 denote the n-dimensional vector space over Z2, and let ⊕ stand for the modulo-2 addition

operation.
The distance between two Boolean functions is represented by the Hamming distance (i.e., the

number of vectors at which the functions are different). The degree of the algebraic normal form of
a Boolean function is called the algebraic degree of the function. A Boolean function is called affine
if its algebraic degree is at most 1, and quadratic if its algebraic degree is equal to 2. A set L ⊆ Z

n
2 is

called an affine subspace if L = a ⊕ U , where a is a vector of Z
n
2 and U , a linear subspace in Z

n
2 . For

vectors u and v, we denote their 2-modulo inner sum by 〈u, v〉. A Boolean function f of n variables is
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called affine on the set D ⊆ Z
n
2 if there are a ∈ Z

n
2 and c ∈ Z2 such that f(x) = 〈a, x〉 ⊕ c for all x ∈ D.

Recall that

Wf (v) =
∑

x∈Z
n
2

(−1)f(x)⊕〈v,x〉

is called the Walsh–Hadamard transform of f , and the numbers Wf (v), the Walsh–Hadamard
coefficients of f . A Boolean function f of 2k variables is called a bent function if all its Walsh–
Hadamard coefficients are equal to ±2k. The set of all bent functions of 2k variables is denoted by B2k.
A survey of papers and results on bent functions can be found, for example, in [4].

Two Boolean functions f and g of n variables are called affinely equivalent if there exist some
nondegenerate n × n matrix A, a vector b of length n, and an affine function l of n variables such that

g(x) = f(Ax ⊕ b) ⊕ l(x).

Assume that D ⊆ Z
n. Let IndD denote the indicator of D; i.e., the Boolean function of n variables

equal to 1 only at the elements of D. Let a(i) denote the ith column of a matrix A and aij , the entry of A.

The minimum possible distance between two different bent functions of 2k variables is 2k. Denote
this distance by dk. In [1], the following is proven:

Proposition 1. Let f ∈ B2k and L ⊆ Z
2k
2 . Then g(x) = f(x) ⊕ IndL(x) is the bent function at

distance dk from f if and only if L is an affine subspace of dimension k and f is affine on L.

Proposition 1 gives an approach for constructing bent functions by means of a subspace of dimen-
sion k (it can be found in [2, 6]).

In our work, we use this for constructing the bent functions at distance dk; i.e., we reduce the problem
under study to finding in Z

2k
2 some affine subspaces of dimension k on which a given bent function is

affine.

2. THE BENT FUNCTIONS OF LEAST DEVIATION
FROM A QUADRATIC BENT FUNCTION

Let us construct all bent functions at distance dk from the bent function

x1xk+1 ⊕ x2xk+2 ⊕ · · · ⊕ xkx2k

and calculate their quantity.

Proposition 2 [7]. Every quadratic bent function of 2k variables is affinely equivalent to the
bent function

f2k
0 (x) = x1xk+1 ⊕ x2xk+2 ⊕ · · · ⊕ xkx2k.

Note that the affine equivalent bent functions have the same number of bent functions at every given
distance. Therefore, by Proposition 2, it suffices to count the number of the bent functions at distance dk

from f2k
0 . Then, the same will be the number of bent functions at distance dk from each of the other

quadratic bent functions.

For consideration of the bent functions at distance dk from f2k
0 , we present some statements

about the affinity of functions in general and f2k
0 , in particular, on a subspace (Section 3), consider

some convenient bases for representing the subspaces (Section 4), describe the affine subspaces of
dimension k on which f2k

0 is affine (Section 5), count these subspaces (Section 6), and give some
examples in the cases of small dimension (Section 7).
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3. AFFINITY OF BOOLEAN FUNCTIONS ON SUBSPACES
We can associate a basis matrix with each linear subspace L and assume that the columns of the

matrix present some basis of L. The following allows us to determine whether a Boolean function is
affine on a subspace or not:

Proposition 3. Let g be an arbitrary Boolean function of n variables and B, an n × k basis
matrix for a linear subspace L of dimension k in Z

n
2 . Then g is affine on L if and only if g′(u) =

g(Bu) of k variables is an affine function.
The proof of Proposition 3 is trivial.

The following provides a criterion for the affinity of f2k
0 on a subspace with a basis matrix B:

Lemma 1. Let B be an arbitrary 2k × k basis matrix of a linear subspace L of dimension k
in Z

2k
2 , and let the matrices A = (aij) and Y = (yij) be formed by the first k and the last k rows

of B, respectively. Then f2k
0 is affine on L if and only if

〈a(i), y(j)〉 ⊕ 〈a(j), y(i)〉 = 0, i, j ∈ {1, . . . , k}, i �= j,

where a(i) and y(i) are the ith columns of A and Y .

Proof. By Proposition 3, f2k
0 is affine on L if and only if the function f ′(u) = f2k

0 (Bu) of k variables is
affine.

The function f ′ has the following algebraic normal form:

f ′(u) =

(
k⊕

j=1

a1juj

)(
k⊕

j=1

y1juj

)
⊕ · · · ⊕

(
k⊕

j=1

akjuj

)(
k⊕

j=1

ykjuj

)
.

The degree of f ′ is obviously at most 2; therefore, for its affinity, it is necessary and sufficient that all
coefficients at uiuj for i �= j were equal to 0; i.e.,

k⊕

t=1

ati · ytj ⊕
k⊕

t=1

atj · yti = 0.

The proof of Lemma 1 is over.

Proposition 4. Let g be an arbitrary function quadratic and affine on a certain affine subspace
u ⊕ L. Then g is also affine on each adjacent class of the subspace L.

Proof. Note that g is affine on a ⊕ L if and only if g(x ⊕ a) is affine on L for every vector a. Since g is
quadratic, the algebraic normal form of g(x⊕ a) differs from that of g only by its affine part. Therefore, g is
affine on L if and only if g(x ⊕ a) is affine on L. At the same time, g is affine on u ⊕ L by the assumption.
Consequently, g is affine on a ⊕ L for all a. The proof is over.

4. REPRESENTATION FOR SUBSPACES
We describe the linear subspace using the basis matrices of Gauss–Jordan type (or GJB-matrices,

in short). Note that, in our notation, the basis vectors are the columns of the basis matrix.

Definition 1. Let G be a matrix with k columns formed by the nonzero vectors u(1), . . . , u(k). Let

�(u(i)) = min
{
j | u

(i)
j �= 0

}
. The matrix G is a GJB-matrix if the following conditions are met:

(i) if i1 < i2 then �(u(i1)) < �(u(i2)); (ii) if i1 �= i2 then u
(i1)

�(u(i2))
= 0.

In this case, we denote the set {�(u(1)), . . . , �(u(k))} by �(G). All rows of G with the numbers from
�(G) will be called the leading rows, the remaining, nonleading. We denote the subspace with the basis
u(1), . . . , u(k) by LG. Note that the columns of G actually are the basis vectors of the space LG, and G�

is called also the reduced stepped matrix.

Example 1. For a subspace of dimension 3 in Z
6
2 with �(G) = {1, 3, 5}, the following is a GJB-matrix:
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G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

1 0 0

0 1 0

1 1 0

0 0 1

1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Proposition 5. Each linear subspace has a unique GJB-matrix.

Proof. Given a linear subspace, we can define its GJB-matrix G as follows: the ith column u(i) of G is

a vector of the space LG which has the most number of junior zeros as well as u
(i)
�(uj)

= 0 for all j > i.

This implies that any subspace L has the GJB-matrix.
Let us prove the uniqueness of such a matrix. Suppose that, for some i, there are two vectors u(i) and

u′(i) satisfying the above property. Then u(i) ⊕ u′(i) has at least one junior zero more, and the coinciding
coordinates of u(i) and u′(i) are zero for their sum.

The proof is complete.

Thus, all kinds of n × k GJB-matrices correspond bijectively to all kinds of linear subspaces of
dimension k in Z

n
2 .

5. CONSTRUCTING THE BENT FUNCTIONS OF LEAST DEVIATION
FROM A QUADRATIC BENT FUNCTION

Introduce the definition of admissible GJB-matrix. Let a GJB-matrix G for a subspace of dimension k
in Z

2k
2 have the form

⎛

⎝A 0

Z Y

⎞

⎠ , (∗)

where A and Y are some k × t and k × (k − t) matrices. Since G is a GJB-matrix, the following hold:
(i) A and Y are GJB-matrices; (ii) all rows of Z with numbers from �(Y ) are zero.

Remove from Z and A all rows with the numbers from �(Y ) and denote the resultants by Z ′ and A′

respectively. Impose the additional conditions on the elements of Z ′:
(iii) LY = L⊥

A;
(iv) the elements of Z ′ are solutions of the system of equations

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a′(2)
�

a′(1)
�

0 0 . . . 0

. . . . . . . . . . . . . . . . . .

a′(t)
�

0 0 . . . 0 a′(1)
�

. . . . . . . . . . . . . . . . . .

0 a′(3)
�

a′(2)
�

0 . . . 0

. . . . . . . . . . . . . . . . . .

0 a′(t)
�

0 . . . 0 a′(2)
�

. . . . . . . . . . . . . . . . . .

0 0 0 . . . a′(t)
�

a′(t−1)�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z′(1)

z′(2)

...

z′(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (1)
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where the matrix M of the system has size (t(t − 1)/2) × t2 (if t ≤ 1 then there is no restrictions on the
elements of Z ′).

If the above conditions are true then G is called an admissible matrix of order t.
The following describes all affine subspaces on which the quadratic bent function is affine:

Theorem 1. Let L be an affine subspace of dimension k in Z
2k
2 . The bent function f2k

0 is affine
on L if and only if L is a linear subspace with an admissible GJB-matrix or with an adjacent
class of such subspace.

Proof. By Proposition 4, we can assume without loss of generality that L is a linear subspace.
Let G be a GJB-матрица for the subspace L. Denote the upper half of G by D and its lower part by V .

Let d(i) and v(i) be the ith columns of D and V , respectively. By Lemma 1, f2k
0 is affine on L if and only if

〈d(i), v(j)〉 ⊕ 〈d(j), v(i)〉 = 0, i, j ∈ {1, . . . , k}, i �= j. (2)

Consider this as a system of equations with respect to the variables v(i) ∈ Z
k
2 and the coefficients

d(i) ∈ Z
k
2. It is obvious that every GJB-matrix G can be expressed as (∗), where, A and Y are some

k × t and k × (k − t) GJB-matrices with t ∈ {0, . . . , k}, respectively. Then, for the columns of Y , the
system (2) has the form

〈a(i), y(j)〉 ⊕ 〈0, z(i)〉 = 0, i ∈ {1, . . . , t}, j ∈ {1, . . . , k − t},
or simply

〈a(i), y(j)〉 = 0, i ∈ {1, . . . , t}, j ∈ {1, . . . , k − t}. (3)

The equations (2) for the columns of Z can be divided into the two parts:

〈a(i), z(j)〉 ⊕ 〈a(j), z(i)〉 = 0, i, j ∈ {1, . . . , t}, i �= j, (4)

〈0, z(j)〉 ⊕ 〈a(j), y(i−t)〉 = 0, i ∈ {t + 1, . . . , k}, j ∈ {1, . . . , t}. (5)

However, (3) imply 〈a(j), y(i−t)〉 = 0. Therefore, (2) are transformed into (3) and (4) for y(i) and z(i)

respectively.
Since G is a GJB-matrix, the rows of Z with the numbers from �(Y ) are zero. Consequently, (4) can

be written as

〈a′(i), z′(j)〉 ⊕ 〈a′(j), z′(i)〉 = 0, i, j ∈ {1, . . . , t}, i > j, (6)

where a′(i) and z′(j) are the columns of A′ and Z ′, respectively, obtained from A and Z by deleting the
rows with numbers from �(Y ).

Thus, f2k
0 is affine on L if and only if the relations (3) and (6) hold.

All elements of L⊥
A are the solutions y(j) of (3). However, Y is the GJB-matrix; and so, it is uniquely

determined by A as the GJB-matrix for L⊥
A.

Equations (6) can be written in the form of the system (1) of linear equations considering

(z′(1)
�
, . . . , z′(t)

�
)�

as the column of variables. Consequently, (2) is satisfied if and only if the matrix G is admissible.
The proof of Theorem 1 is complete.

Here are some extreme cases: for t = 0, there is the unique admissible GJB-matrix B =

⎛

⎝0

E

⎞

⎠; and,

for t = k, the admissible GJB-matrices have the form B =

⎛

⎝E

T

⎞

⎠ , where T is an arbitrary symmetric

matrix. There are 2k(k+1)/2 of such matrices.
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Consider the example of constructing a linear subspace on which f8
0 (x) is affine; i.e., let k = 4. The

general form of the basis matrix B is defined by (∗). Take as A the following matrix of rank 2, obtain
one of the basis matrices of the subspace LY , and choose the GJB-matrix Y for the subspace LY (here
�(Y ) = {1, 2}):

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0

1 0

0 1

1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
−→

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1

1 0

0 1

0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
−→ Y =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

1 1

1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Hence, A′ =

⎛

⎝ 0 1

1 1

⎞

⎠, and then M =
(
1 1 0 1

)
. Thus, Z ′ has the form Z ′ =

⎛

⎝ c1 ⊕ c2 c3

c1 c2

⎞

⎠ .

For example, for c1, c2, c3 = 1, we obtain the matrix

⎛

⎝ 0 1

1 1

⎞

⎠ .

In result, we arrive at the GJB-matrix B for LB on which the function x1x5 ⊕ x2x6 ⊕ x3x7 ⊕ x4x8 is
affine:

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

1 0 0 0

0 1 0 0

1 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

6. COUNTING THE NUMBER OF BENT FUNCTIONS OF LEAST DEVIATION
FROM A QUADRATIC BENT FUNCTION

We proceed to counting the number of bent functions at distance dk from an arbitrary quadratic bent
function:

Lemma 2. The rows of the matrix M of form (1) are linearly independent.

Proof. Let the matrix Y ′ be formed by all nonleading rows of Y . Note that Y ′ has size t× t. We show that
the vectors a′(1), . . . , a′(t) are linearly independent. Note also that this implies the linear independence of
the rows of M .

Assume that there are some distinguished i1, . . . , ip such that

a′(i1) ⊕ · · · ⊕ a′(ip) = 0.

Then, for all j = 1, . . . , k − t,

0 = 〈y′(j), a′(i1) ⊕ · · · ⊕ a′(ip)〉 = 〈y′(j), a′(i1)〉 ⊕ · · · ⊕ 〈y′(j), a′(ip)〉.
Also, for all q = 1, . . . , p,

〈y′(j), a′(iq)〉 = 〈y(j), a(iq)〉 ⊕ a�(y(j))iq
.
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Since LY = L⊥
A, we have 〈y(j), a(iq)〉 = 0 and, therefore,

a�(y(j))i1
⊕ · · · ⊕ a�(y(j))ip = 0.

The elements a�(y(j))iq
are all those deleted from the columns with numbers i1, . . . , ip. Hence, we obtain

a(i1) ⊕ · · · ⊕ a(ip) = 0,

but the vectors a(1), . . . , a(t) are linearly independent. We arrive at a contradiction. Hence, a′(1), . . . , a′(t)

are linearly independent. The proof of Lemma 2 is complete.

Let St
k denote the number of linear subspaces of dimension t in Z

k
2. Note that St

k can be calculated as
follows:

St
k =

(2k − 1) · · · (2k−t+1 − 1)
(2t − 1) · · · (21 − 1)

,

which can be found, for example, in [3].

Lemma 3. For arbitrary k > 0 and 0 < t < k, St
k = St

k−1 + 2k−tSt−1
k−1.

To prove Lemma 3, it suffices to use the above formula.

Theorem 2. Every quadratic bent function of 2k variables has exactly

2k · (21 + 1) · · · (2k + 1)

bent functions at distance dk.

Proof. By Proposition 2, every quadratic bent function of 2k variables is affinely equivalent to f2k
0 .

We show that this bent function is affine exactly on
∑k

t=0 2t(t+1)/2St
k linear subspaces of dimension k.

Then, there will be 2k more affine subspaces; and, hence, we obtain the number of bent functions at
distance dk by Proposition 1.

By Theorem 1, it suffices to calculate the number of the admissible 2k × k GJB-matrices since the
different GJB-matrices correspond to different linear subspaces. For an admissible GJB-matrix of size t,
we consider the corresponding matrices A, Y , and Z. The matrix A of rank t can be chosen in St

k ways.
Then Y is uniquely determined. For a fixed matrix A, by Theorem 1 and Lemma 2, we can chose 2t(t+1)/2

matrices Z. Thus, every affine quadratic function is affine on exactly

Ck =
k∑

t=0

2t(t+1)/2St
k

linear subspaces. Let us simplify this formula.
We prove now that, for k > 0, Ck = (2k + 1)Ck−1. By Lemma 3, St

k = St
k−1 + 2k−tSt−1

k−1 for each t

such that 0 < t < k. Note that, for the extreme values of t, we have S0
k = S0

k−1 and Sk
k = 2k−kSk−1

k−1 .
Hence,

Ck =
k∑

t=0

2t(t+1)/2St
k =

k−1∑

t=0

2t(t+1)/2St
k−1 +

k∑

t=1

2k−t2t(t+1)/2St−1
k−1.

The first sum is equal to Ck−1. In the second sum, we replace t with i + 1 and obtain

Ck = Ck−1 +
k−1∑

i=0

2k−(i+1)2(i+1)(i+1+1)/2Si
k−1.

Since k − (i + 1) + (i + 1)(i + 2)/2 = k + i(i + 1)/2, we have

Ck = Ck−1 + 2k
k−1∑

i=0

2i(i+1)/2Si
k−1 = (2k + 1)Ck−1,
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as well as C1 = 3. Hence, Ck = (21 + 1) · · · (2k + 1).
The proof of Theorem 2 is complete.

It is easy that

2k · (21 + 1) · · · (2k + 1) < 3 · 2k · 2k(k+1)/2.

Therefore, more than a third of bent functions at distance dk from a quadratic bent function are rather

simple to obtain, namely, by means of admissible GJB-matrices of the form G =

⎛

⎝E

T

⎞

⎠ , where T is an

arbitrary symmetric k × k matrix.
Also note that all bent functions at distance dk from an arbitrary quadratic bent function are affinely

equivalent to the bent functions of the Maiorana–McFarland class.

7. SOME EXAMPLE IN THE CASE OF SMALL DIMENSION

Denote an arbitrary element of Z2 by ∗. Then,for k = 2, all admissible GJB-matrices are as follows
(the leading elements are highlighted):

for t =, we have the only matrix
⎛

⎜⎜⎜⎜⎜⎜⎝

0 0

0 0

1 0

0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
;

for t = 1, we obtain 3 · 2 = 6 matrices of the form

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0

0 0

∗ 0

0 1

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0

1 0

0 1

∗ 1

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0

1 0

0 1

∗ 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and, for t = 2, there are 1 · 23 = 8 matrices of the form

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

∗ a

a ∗

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where a is some element of Z2. We obtain eventually fifteen linear subspaces. Also taking all adjacent
classes of the subspaces with the above basis matrices, we have sixty affine subspaces on which f4

0 is
affine.

For k = 3, the function f6
0 is affine on the linear subspaces with the following admissible GJB-

matrices:
for t = 0, there is the only matrix a matrix
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for t = 1, we obtain 7 · 2 = 14 matrices of the form
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 0 0

0 0 0

∗ 0 0

0 1 0

0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

1 0 0

0 0 0

0 1 0

∗ 1 0

0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 0 0

1 0 0

0 1 0

0 0 1

∗ 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

1 0 0

1 0 0

0 1 0

0 0 1

∗ 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 0 0

0 0 0

0 1 0

∗ 0 0

0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 0 0

1 0 0

0 1 0

0 0 1

∗ 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

∗ 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for t = 2, we have 7 · 23 = 56 matrices of the form
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 0

∗ a 0

a ∗ 0

0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

1 0 0

0 0 1

a ∗ 0

∗ a 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 1 0

∗ a 0

0 0 1

a ∗ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

1 1 0

0 0 1

a ∗ 1

b a ⊕ b 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 0 0

0 1 0

∗ a 0

0 0 1

a ∗ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

1 0 0

0 1 0

0 0 1

∗ a 1

a ∗ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 0 0

0 1 0

0 0 1

∗ a 0

a ∗ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and, for t = 3, we obtain 1 · 26 = 64 matrices of the form

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

∗ a c

a ∗ b

c b ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a, b, and c are some elements of Z2. Thus, we find 135 linear subspaces. Accounting also for all
adjacent classes of the given subspaces, we obtain 1080 affine subspaces on which f6

0 is affine.
The following table presents the number of bent functions at distance dk from every quadratic bent

function for small number of variables:

2k 2 4 6 8 10 12

Number 6 60 1080 36720 2423520 315057600

8. A LOWER ESTIMATE OF BENT FUNCTIONS OF LEAST DEVIATION
FROM BENT FUNCTIONS OF THE MAIORANA–McFARLAND CLASS

Since f2k
0 belongs to the Maiorana–McFarland class, all quadratic bent functions are affinely

equivalent to the bent functions of this class. Therefore, we consider the more general problem of finding
a lower bound on the number of bent functions at the distance dk from the functions of this class.

The Maiorana–McFarland class contains the bent function of the form

f(x, y) = 〈x, π〉(y) ⊕ ψ(y),

where x, y ∈ Z
k
2, ψ is a Boolean function of k variables, and π is a permutation on Z

k
2 . We denote this

class by M2k. More detailed information on it can be obtained in [8].
To find a lower bound, we need the following assertions:

Proposition 6. Let f be a Boolean function of n variables, let L be a linear subspace in Z
n
2 , and

let D1 and D2 be various adjacent classes from L such that

f |D1(x) = 〈a, x〉 ⊕ c, f |D2(x) = 〈a, x〉 ⊕ c′

for some vector a ∈ Z
n
2 and constants c and c′. Then f is affine on D1 ∪ D2.

Proof. Without loss of generality, assume that D1 = L and denote D2 by D. Clearly, the union of a linear
subspace and its adjacent class is a linear subspace. We denote L ∪ D by L′.

Show that f is affine on L′.
If c = c′ then the assertion is obvious. Assume that c′ = c ⊕ 1. Then f |L(x) = 〈a, x〉 ⊕ c and

f |D(y) = 〈a, y〉 ⊕ c ⊕ 1. Hence, for all w ∈ L⊥ and b = a ⊕ w,

f |L(x) = (f(x) ⊕ 〈w, x〉)|L = 〈b, x〉 ⊕ c.

Let v ∈ D. Also, for every x ∈ L and y ∈ D, we have

〈b, y〉 = 〈a ⊕ w, y〉 = 〈a, y〉 ⊕ 〈w, y〉 = 〈a, y〉 ⊕ 〈w, x ⊕ v〉
= 〈a, y〉 ⊕ 〈w, x〉 ⊕ 〈w, v〉 = 〈a, y〉 ⊕ 〈w, v〉.
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It is clear that there exists w′ ∈ L⊥ such that 〈w′, v〉 = 1. If it is not the case then v ∈ L⊥⊥ = L.
However, L and D are distinguished; a contradiction. Hence, for b = a⊕w′, we have 〈b, y〉 = 〈a, y〉 ⊕ 1.
Consequently,

f |D(y) = 〈a, y〉 ⊕ c ⊕ 1 = 〈b, y〉 ⊕ c ⊕ 1 ⊕ 1 = 〈b, y〉 ⊕ c

as well as f |L(x) = 〈b, x〉 ⊕ c. The proof of Proposition 6 is complete.

Lemma 4. A bent function f ∈ B2k cannot be affine on an affine subspace of dimension greater
than k.

This can be found in [6]. To prove the lemma, it suffices to assume the converse and apply
Proposition 1 several times.

Proposition 7. Let f ∈ B2k be a bent function and let L be as subspace of dimension l in Z
2k
2

such that f is affine on every adjacent class of it. Then, for each adjacent class a ⊕ L, there exist
exactly 22k−l vectors w such that f |a⊕L(x) = 〈w, x〉 ⊕ cw for some constant cw.

To prove Proposition 7, it suffices, for x ∈ a ⊕ L, to solve the equations 〈w ⊕ w0, x〉 = const with
respect to w.

Lemma 5. Let f ∈ B2k and let L be a linear subspace of dimension k in Z
2k
2 such that the bent

function f is affine on every adjacent class of it. Then, for w ∈ Z
2k
2 , there is u ∈ Z

2k
2 such that, for

some constant c,

f |u⊕L(x) = 〈w, x〉 ⊕ c.

Proof. Assume that there are two different adjacent classes D1 and D2 for the subspace L and a vector w
such that

f |D1(x) = 〈w, x〉 ⊕ c1, f |D2(x) = 〈w, x〉 ⊕ c2.

Then, by Proposition 6, f is affine on the affine subspace D1 ∪ D2 of dimension greater than k; a
contradiction with Lemma 4. Next, we use Proposition 7. The proof is over.

Theorem 3. Let f be a bent function of 2k variables of the Maiorana–McFarland class. Then
the number of bent functions at distance dk from f is at least 22k+1 − 2k.

Proof. By Proposition 1, it suffices to calculate the affine subspace of dimension k on which f is affine.
Let

L =
{
(x, 0, . . . , 0) | x ∈ Z

k
2

}
⊆ Z

2k
2 .

Obviously, L is a linear subspace. Also, every function of the Maiorana–McFarland class is affine on L
and each its adjacent class. Let us count the adjacent classes of the subspaces that intersect L on 2k−1

elements.
The subspace L contains exactly 2k − 1 different linear subspaces U of dimension k − 1. Thus, the

affine subspace u ⊕ U can be selected by exactly 2k+1 · (2k − 1) ways. It is also clear that u ⊕ U is
contained in u ⊕ L.

By Proposition 7, there are exactly 2k+1 vectors w1 such that f |u⊕U(x) = 〈w1, x〉 ⊕ cw1 . However,
for u⊕ L, there exist exactly 2k vectors w2 such that f |u⊕L(x) = 〈w2, x〉 ⊕ cw2 . Therefore, by Lemma 5,
there exists an adjacent class v ⊕ L different from u ⊕ L and such that, for some vector w and constants
c1 and c2, we have

f |u⊕U(x) = 〈w, x〉 ⊕ c1, f |v⊕L(x) = 〈w, x〉 ⊕ c2.

The set v ⊕ L contains exactly two different adjacent classes of the subspace U . We denote them by
a ⊕ U and b ⊕ U . Thus, by Proposition 6, f is affine on the affine subspaces (u ⊕ U) ∪ (a ⊕ U) and
(u ⊕ U) ∪ (b ⊕ U) of dimension k. Since we choose an unordered pair of the adjacent classes, we obtain

((2k − 1) · 2k+1 · 2)/2 = 22k+1 − 2k+1

different affine subspaces of dimension k on which f is affine. Also, f is affine on all adjacent classes of
the subspace L.

The proof of Theorem 3 is complete.
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9. OTHER ESTIMATES AND HYPOTHESES

Consider a trivial upper estimate on the number of bent functions at distance dk from some given
bent function.

Proposition 8. Let f ∈ B2k . Then the number of bent functions at distance dk from f is at least
2k2+2k.

This result was obtained by an upper estimate on the number of affine subspaces of the required
dimension using the formula for St

k. Thus, the number of the bent functions at distance dk from
a quadratic bent function is greater than the square root of the trivial upper estimate.

Consider a hypothesis about maximum number of the bent functions at distance dk from a given bent
function:

Hypothesis. Each quadratic bent function has the maximum possible number of bent functions
at distance dk; i.e., the upper bound on the number of bent functions at distance dk from an
arbitrary bent function is 2k(21 + 1) · · · (2k + 1).

Note that the lower bound on the number of bent functions at distance dk from a given bent function
is zero, because there are bent functions which have no bent functions at distance dk. The problem of
the existence of bent functions at distance dk from a given function is related with the concepts of the
normal and abnormal bent functions. In particular, from [5] it follows that there are some bent functions
of 2k variables that are not affine on any affine subspace of dimension k. Thus, not for all bent functions
we can construct a bent function at distance dk.

Example 2 [5]. For even n � 14, the bent function

tr(α(x1, . . . , x14)57) ⊕ x15x16 ⊕ x17x18 ⊕ . . . ⊕ xn−1xn

has no bent functions at distance dk. Here, by tr(·) is denoted the trace of GF (214) into GF (2), and by
α, a corresponding element Z

2. The vector (x1, . . . , x14) is also considered as an element of GF (214).
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